

Department of Astronomy and Space Science
Chungnam National University, Korea
and
Big Bear Solar Observatory, NJIT

1. What are they?

- Small-scale (~1 Mm), short-lived (~ 1 min), high-velocity (~ 100 km/s) events that are observed in transition region UV lines
 - Originally discovered from HRTS experiments

2. Why are they important?

- They are many and ubiquitous on the Sun
- Small-scale magnetic energy release process
 - Magnetic reconnection
 - Shock
- Possibly important in coronal heating and solar wind driving

Dynamical Property

Confirmation of bi-directional jet nature

from spectral profiles, and spatial variations of Doppler shifts Innes et al. (1997a) Chae et al. (1998a)

- Temporal Behavior
 - ✓ Bursty and recurrent occurrence
 Innes et al. (1997b) Chae et al (1998a)

- Magnetic Property
 - weak fields of mixed polarity
 - Away from big flux concentrations
 - strong association
 with flux cancellation
 Chae et al. 1998a
 flux cancellation
 precedes explosive events
 Ryutova and Tarbell 2000

- Association with H alpha upflow
 - ✓ typical size 2.5 arc sec
 - ✓ lifetime 1.4 min
 - speed up to 20 km/s,typically 5 km/sbirthrate 80 /s
 - ✓ recurrent behavior Chae et al. (1998b) Lee et al. (2000)

Spicules and Upflow Events

- Comparison with blinkers
 - ✓ associated, but not co-spatial
 - both kinds are in mixed polarity regions
 - blinkers comprise
 elementary brightenings
 that are similar to
 explosive events in size,
 lifetime, and spectral
 characteristics

- Possible association with density enhancements
 - Perez and Doyle (2000)
 cf. Harrison et al. (1999): blinkers are predominantly caused by increases in density or filling factor

Global energy contribution

upward energy flux = 10^5-10^6 cgs : seems to be enough for coronal heating net energy flux = 10^4-10^5 cgs
Winebarger et al. (1999)
cf. cornal heating 3 x 10^5 cgs
Withbroe & Noyes (1977)

4. How are they explained?

- Magnetic reconnection flow in transition region
 - Originally proposed by Dere et al. (1991)
 - ✓ Supported by: Innes et al. (1997), Chae et al. (1998a)
 - ✓ Bi-directional jet nature
 - ✓ Jet speed comparable to Alfven speed in the transition region
 - ✓ MHD simulation (Innes & Toth 1999)
 - ✓ **Association with flux cancellation** if flux cancellation is a result of magnetic reconnection in the level of transition region

Challenged by:

- ✓ Association with flux cancellation if flux cancellation is a result of low level magnetic reconnection
- ✓ Association with H alpha upflow events
- ✓ The existence of bright central spectral component in lines (Innes & Toth 1999)

4. How are they explained?

- Two-step magnetic reconnection
 - √ Chae (1999)
 - ✓ Flux cancellation=low level reconnection
 - ✓ H alpha upflow event = development of upward flow of low level reconnection
 - Explosive events = secondary reconnection driven by H alpha upflow
 - Supported by density enhancement

Two-Step Reconnection Model

- Step 1: Generation of Upflow Events
- Step 2:Generation ofExplosive Events

4. How are they explained?

- Hydrodynamic cumulation
 - ✓ Tarbell et al. (1999), Ryutova & Tarbell (200)
 - ✓ Flux cancellation = low level reconnection
 - ✓ Shock waves are created by low level reconnection
 - Explosive events = a result of shock collision or explosive instability of negative energy waves
 - Possible to explain both brightenings and jets in the same context

5-Are they important in coronal heating?

- Pros:
 - ✓ numerous
 - carry (kinetic) energy enough for coronal heating
- Cons:
 - ✓ Too cool (10⁵ K) for coronal heating
 - ✓ Too localized
- Necessary conditions:
 - Process to convert kinetic energy to heat for 10^6 K plasma
 - Process to distribute heat over very large area
 - High-frequency Alfven waves created by explosive events?

- The physics of magnetic reconnection responsible for flux cancellation
 - ✓ The atmospheric level of occurrence: photosphere or transition region?
 - ✓ Steady or bursty? If flux cancellation occurs in a bursty way, what's the size, flux, and time scale of elementary process?
- The refined temporal and spatial relationships between flux cancellation, H alpha upflow events, and explosive events
- Possible existence of high-frequency MHD waves generated by explosive events